Сколько во Вселенной черных дыр?

В третий раз за историю мы напрямую обнаружили неоспоримую сигнатуру черных дыр: гравитационные волны, появившиеся в результате их слияния. В сочетании с тем, что мы уже знаем о звездных орбитах возле галактического центра, рентгеновских и радионаблюдений других галактик, измерений скорости движения газа, отрицать существование черных дыр ну никак нельзя. Но хватит ли нам информации, из этих и других источников, чтобы рассказать нам, сколько на самом деле во Вселенной черных дыр и как они распределяются?

В самом деле, как много во Вселенной черных дыр, если сравнивать с видимыми звездами?

Первое, что вы хотели бы сделать, это перейти к прямым наблюдениям. И это отличное начало.

Сколько во Вселенной черных дыр?

Карта экспозиции в 7 миллионов секунд, сделанная Chandra Deep FieldSouth. В этом регионе сотни сверхмассивных черных дыр

Наш лучший рентгеновский телескоп на сегодняшний день — это рентгеновская обсерватория Чандра. Со своей позиции на орбите Земли она может идентифицировать даже одиночные фотоны из отдаленных источников рентгеновского излучения. Создавая глубокие изображения существенных участков неба, она может идентифицировать буквально сотни рентгеновских источников, каждый из которых соответствует далекой галактике за пределами нашей собственной. Основываясь на энергетическом спектре полученных фотонов, мы видим сверхмассивные черные дыры в центре каждой галактики.

Но каким бы невероятным ни было это открытие, в мире гораздо больше черных дыр, чем по одной на галактику. Конечно, в каждой галактике, в среднем, есть по меньшей мере миллионы или миллиарды солнечных масс, но мы видим далеко не всё.

Сколько во Вселенной черных дыр?

Массы известных бинарных систем черных дыр, включая три проверенных слияния и одного кандидата на слияния от LIGO

Недавно LIGO заявила о своем третьем прямом обнаружении мощного гравитационного сигнала от слияния бинарных черных дыр, что подтвердило распространенность таких систем по Вселенной. У нас пока недостаточно статистики, чтобы получить числовую оценку, поскольку порог ошибки слишком высок. Но если взять за основу текущий порог LIGO и тот факт, что она находит сигнал раз в два месяца (в среднем), можно с уверенность сказать, что в каждой галактике размером с Млечный Путь, которую мы можем зондировать, есть как минимум с десяток таких систем.

Сколько во Вселенной черных дыр?

Диапазон Advanced LIGO и ее возможность обнаружения сливающихся черных дыр

Более того, наши рентгеновские данные показывают, что есть много бинарных черных дыр с меньшей массой; возможно, значительно больше, чем массивных, которые может найти LIGO. И это даже не учитывая данные, указывающие на существование черных дыр, которые не включены в жесткие бинарные системы, а их должно быть большинство. Если в нашей галактике есть десятки черных дыр средней и высокой массы (в 10-100 солнечных масс), должны быть сотни (3-15 солнечных масс) бинарных черных дыр и тысячи изолированных (небинарных) черных дыр звездной массы.

Здесь стоит сделать акцент на «как минимум».

Потому что черные дыры чертовски сложно искать. Пока что мы можем видеть лишь самые активные, самые массивные и самые выдающиеся. Черные дыры, которые закручиваются по спирали и сливаются, великолепны, но такие конфигурации должны быть космологически редкими. Те, что увидела Чандра, являются самыми массивными, активными и все такое, но большинство черных дыр не являются монстрами в миллионы-миллиарды солнечных масс, и большинство больших черных дыр неактивны в настоящее время. Мы наблюдаем лишь малую фракцию черных дыр, и это стоит понимать, невзирая на все великолепие наблюдаемого.

Сколько во Вселенной черных дыр?

То, что мы воспринимаем как взрыв гамма-излучения, может возникать в процессе слияния нейтронных звезд, которые выбрасывают вещество во Вселенную и создают самые тяжелые из известных элементов, но также порождают черную дыру в конце

И все же у нас есть способ получить качественную оценку количества и распределения черных дыр: мы знаем, как они образуются. Мы знаем, как сделать их из молодых и массивных звезд, которые становятся сверхновыми, из нейтронных звезд, которые сливаются, и в процессе прямого коллапса. И хотя оптические сигнатуры создания черной дыры крайне неоднозначны, мы повидали достаточно звезд, их смерти, катастрофических событий и звездообразования за всю историю Вселенной, чтобы иметь возможность найти именно те цифры, которые ищем.

Сколько во Вселенной черных дыр?

Останки сверхновой, рожденной из массивной звезды, оставляют после себя коллапсирующий объект: либо черную дыру, либо нейтронную звезду, из которой в дальнейшем может образоваться черная дыра при определенных условиях

Три этих способа создания черных дыр все уходят корнями, если проследить все до конца, в массивные регионы звездообразования. Чтобы получить:

  • Сверхновую, вам нужна звезда, которая будет в 8-10 раз больше массы Солнца. Звезды больше 20-40 солнечных масс дадут вам черную дыру; звезды меньше — нейтронную звезду.
  • Нейтронную звезду, сливающуюся в черную дыру, нужно либо две нейтронных звезды, танцующих в спирали или сталкивающихся, либо нейтронная звезда, высасывающая массу из звезды-компаньона до определенного предела (около 2,5-3 солнечных масс), чтобы стать черной дырой.
  • Прямой коллапс черной дыры, вам нужно достаточно материала в одном месте для образования звезды в 25 раз массивнее Солнца, и определенные условия, чтобы точно получить черную дыру (а не сверхновую).

Сколько во Вселенной черных дыр?

Фотографии Хаббла показывают массивную звезду в 25 раз массивнее Солнца, которая просто исчезла, без образования сверхновой или другого объяснения. Прямой коллапс будет единственным возможным объяснением

В наших окрестностях мы можем измерить, из всех образующихся звезд, сколько из них имеют правильную массу, чтобы потенциально стать черной дырой. Мы находим, что лишь 0,1-0,2% всех звезд поблизости имеют достаточно массы, чтобы стать сверхновой, причем подавляющее большинство образует нейтронные звезды. Около половины систем, которые образуют бинарные (двоичные) системы, однако, включают звезды сопоставимых масс. Другими словами, большинство из 400 миллиардов звезд, сформировавшихся в нашей галактике, никогда не станут черными дырами.

Сколько во Вселенной черных дыр?

Современная система спектральной классификации систем Моргана-Кинана с температурным диапазоном каждого звездного класса в кельвинах. Превосходящее большинство (75%) звезд сегодня — звезды М-класса, из которых лишь 1 на 800 достаточно массивна, чтобы стать сверхновой

Но это нормально, потому что некоторые из них станут. Что еще более важно, многие уже стали, хоть и в далеком прошлом. При образовании звезд вы получаете распределение масс: вы получаете несколько массивных звезд, несколько больше средних по массе и очень много маломассивных. Настолько много, что маломассивные звезды М-класса (красные карлики) с массой всего в 8-40% солнечной составляют три четверти звезд в наших окрестностях. В новых скоплениях звезд будет не так много массивных звезд, которые могут стать сверхновыми. Но в прошлом звездообразующие регионы были намного больше и богаче массой, чем Млечный Путь сегодня.

Сколько во Вселенной черных дыр?

Крупнейшие звездные ясли в местной группе, 30 Doradus в Туманности Тарантула, включают самые массивные звезды, известные человечеству. Сотни из них (в следующие несколько миллионов лет) станут черными дырами

Выше вы видите 30 Doradus, крупнейший звездообразующий регион в местной группе, с массой в 400 000 солнц. В этом регионе тысячи горячих, очень синих звезд, из которых сотни станут сверхновыми. 10-30% из них превратятся в черные дыры, а остальные станут нейтронными звездами. Если предположить, что:

  • в нашей галактике было много таких регионов в прошлом;
  • крупнейшие звездообразующие регионы сосредоточены вдоль спиральных рукавов и по направлению к галактическому центру;
  • где мы видим пульсары (останки нейтронных звезд) и источники гамма-лучей сегодня, будут черные дыры,

мы можем составить карту и показать на ней, где будут черные дыры.

Сколько во Вселенной черных дыр?

Спутник NASA «Ферми» составил карту высоких энергий Вселенной в высоком разрешении. Черные дыры в галактике на карте вероятнее всего будут следовать выбросам с небольшим разбросом и разрешаться миллионами отдельных источников

Это карта гамма-лучевых источников неба, составленная «Ферми». Она похожа на звездную карту нашей галактики, разве что сильно высвечивает галактический диск. Более старые источники обеднели на гамма-лучи, поэтому это относительно новые точечные источники.

По сравнению с этой картой, карта черных дыр будет:

  • более сосредоточенной в галактическом центре;
  • чуть более размытой по ширине;
  • включать галактическую выпуклость;
  • состоять из 100 миллионов объектов, плюс-минус погрешность.

Если создать гибрид карты «Ферми» (выше) и карту галактики COBE (ниже), можно получить количественную картину расположения черных дыр в галактике.

Сколько во Вселенной черных дыр?

Галактика, видимая в инфракрасном от COBE. Хотя эта карта показывает звезды, черные дыры будут следовать похожему распределению, хоть и более сжатому в галактической плоскости и более централизованному к выпуклости

Черные дыры реальные, распространены и подавляющее большинство из них крайне трудно обнаружить сегодня. Вселенная существует очень давно, и хотя мы видим огромное число звезд, большинство из самых массивных звезд — 95% и больше — уже давно погибли. Чем они стали? Около четверти из них стали черными дырами, миллионы еще скрываются.

Сколько во Вселенной черных дыр?

Черная дыра в миллиарды раз массивнее Солнца питает рентгеновский джет в центре M87, но в этой галактике должны быть миллиарды других черных дыр. Их плотность будет сосредоточена в галактическом центре

Эллиптические галактики закручивают черные дыры в эллиптический рой, скапливающийся вокруг галактического центра, примерно как и звезды, что мы видим. Многие черные дыры со временем мигрируют в гравитационный колодец в центре галактики — поэтому сверхмассивные черные дыры и становятся сверхмассивными. Но мы пока не видим этой картины целиком. И не увидим, пока не научимся качественно визуализировать черные дыры.

В отсутствие прямой визуализации, наука дает нам только это и рассказывает кое-что примечательное: на каждую тысячу звезд, что мы видим сегодня, есть примерно одна черная дыра. Неплохая статистика для совершенно невидимых объектов, согласитесь.

Источник

Related Articles

Back to top button
Close
sinkronisasi reel pendek pola 4 6 spin yang sering mendahului scatter ketiga riset soft start ketika awal spin terlihat ringan tapi menyimpan momentum besar pola jam senja 18 30 20 30 aktivasi wild lebih rapat dibanding sesi lain deteksi visual micro flash efek singkat yang muncul tepat sebelum pre freespin analisis jalur simbol menyilang indikator non linear menuju burst bertingkat fenomena board padat simbol besar berkumpul sebelum tumble panjang terbuka studi turbo pendek mengapa 6 9 spin cepat lebih sering mengunci momentum perilaku reel awal saat reel 1 2 terlihat berat menjelang aktivasi multiplier pola recovery halus wild tunggal muncul setelah dead spin sebagai sinyal balik arah riset scatter tertahan ketika dua scatter bertahan lama sebelum ledakan aktual efek clean frame stabil layar terlihat bersih tepat saat rtp masuk zona seimbang analogi hujan gerimis tumble kecil berulang yang diam diam mengarah ke burst besar mapping ritme animasi perubahan tempo visual sebagai petunjuk pre burst pola jam malam 21 00 23 00 frekuensi multiplier bertingkat meningkat signifikan reel terakhir aktif aktivasi mendadak di reel 5 sebagai pemicu tumble lanjutan observasi spin manual kontrol ritme yang membantu membaca sinyal sistem deteksi low pay berpola ketika simbol kecil justru menjadi fondasi bonus studi pre burst senyap fase tenang 8 12 spin sebelum ledakan tajam jalur simbol turun naik gerakan dinamis yang mengindikasikan multiplier siap aktif blueprint sesi pendek strategi mengatur awal tengah spin agar momentum tidak terbuang reel tengah menguat pola sinkronisasi halus yang sering jadi awal scatter berlapis riset mini tumble ketika 3 tumble pendek berurutan jadi penanda bonus dekat kabut tipis di layar frame redup yang hampir selalu mengarah ke pre multiplier analisis pola jam 17 00 20 00 wild awal muncul lebih konsisten dari hari sebelumnya slide track tajam pergerakan simbol diagonal yang munculkan fase pre burst fenomena quiet board ketika 10 spin tenang justru memunculkan ledakan mendadak scatter luncur lambat indikator unik bahwa freespin akan terealisasi setelah 2 4 spin pola spin turbo ringkas efektivitas 7 turbo cepat dalam memicu tumble besar perubahan warna clean frame efek putih pucat yang jadi kode sebelum multiplier aktif riset simbol berat ketika high pay turun lebih banyak dari biasanya menjelang bonus analisis rotasi vertikal jalur simbol memanjang yang memperkuat potensi burst pola jam dingin 02 00 04 00 scatter sering bertahan lama sebelum akhirnya terkunci fs simulasi 3000 spin frekuensi wild grip muncul tinggi di pola malam hari reel 5 hyper active tanda bahwa sistem sedang mendorong momentum ke kanan analogi sungai tenang layar tanpa tumble yang justru menyimpan ledakan 2 3 putaran lagi frame gelap sesaat sinyal visual tipis sebelum scatter muncul berturut turut pola recovery wild ketika wild muncul setelah dead spin panjang sebagai pembalik keberuntungan mapping simbol rendah bagaimana low pay yang berulang bisa mengangkat probabilitas bonus reel bergerak serempak efek sinkronisasi singkat sebelum pre freespin sequence pola burst 3 lapisan ketika sistem memberikan tumble berjenjang yang mengarah ke ledakan utama